On 1-movable Strong Resolving Hop Domination in Graphs
نویسندگان
چکیده
A set S is a 1-movable strong resolving hop dominating of G if for every v ∈ S, either S\{v} or there exists vertex u (V (G)\S)∩NG(v) such that (S \ {v}) ∩ {u} G. The minimum cardinality denoted by γ 1 msRh(G). In this paper, we obtained the corresponding parameter in graphs resulting from join, corona and lexicographic product two graphs. Specifically, characterize sets these types determine bounds exact values their domination numbers.
منابع مشابه
Resolving Domination in Graphs
For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a connected graph G, the (metric) representation of v with respect to W is the k-vector r(v|W ) = (d(v,w1), d(v,w2), . . . , d(v, wk)), where d(x, y) represents the distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W . A resolv...
متن کاملHop Domination in Graphs-II
Let G = (V,E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V − S, there exists u ∈ S such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the ...
متن کاملOn Hop Roman Domination in Trees
Let $G=(V,E)$ be a graph. A subset $Ssubset V$ is a hop dominating setif every vertex outside $S$ is at distance two from a vertex of$S$. A hop dominating set $S$ which induces a connected subgraph is called a connected hop dominating set of $G$. Theconnected hop domination number of $G$, $ gamma_{ch}(G)$, is the minimum cardinality of a connected hopdominating set of $G$...
متن کاملPerfect graphs of strong domination and independent strong domination
Let γ(G), i(G), γS(G) and iS(G) denote the domination number, the independent domination number, the strong domination number and the independent strong domination number of a graph G, respectively. A graph G is called γi-perfect (domination perfect) if γ(H) = i(H), for every induced subgraph H of G. The classes of γγS-perfect, γSiS-perfect, iiS-perfect and γiS-perfect graphs are defined analog...
متن کاملStrong Domination Critical and Stability in Graphs
In general strong domination number s(G) can be made to decrease or increase by removal of vertices from G. In this paper our main objective is the study of this phenomenon. Further the stability of the strong domination number of a graph G is investigated. 2000 Mathematics subject classification : 05C70
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Pure and Applied Mathematics
سال: 2023
ISSN: ['1307-5543']
DOI: https://doi.org/10.29020/nybg.ejpam.v16i2.4658